An experimental steady-state foliation

J H. Ree
[)epariment ol Geolngcal Sciences, Siale Universily of New Yurk al Altany, | 4 (h) Washinglan Ave Albany, NY I2:2, US A

Abstract

The history ol the intensity and onentation of agrain shape foliation was investigated in octachlora propane delormed in simple shear al 80% ol ils abolute meling lemperalure and a shearstran rate of $4 \mathrm{~m} 11^{-4}$ - ${ }^{-1}$ Folialion onentation, developed Irom the begrning of the delormalon, remans steady throughout the delomation Foltalion inlensily becomes steady atter a hulk shear strain ol aboul 04 has been accumulated The steadiness of lohation onemiation and intensily is achieved by some balance between fulation strenghening and loliation weakening processes 'The main lolation strengihening process is intragatanular plasic delormaiton. Folialion weakening processes include dynamic recrystallizalan by migralion ol siraight or slighily wavy grain houndanes, grain dissection, iotalional rectystallization, grain amalgamation, relalive ngdity of hard grams and giain houndary sliding. A small but dehnite angle, although not constant, is observed heiween the loliation and the long, asis ot the bulk total stran ellipse 'The average aspect ratio of grains is lower than that of the bulk total stran ellipse by a lactor ol aboul 04 al foral shear stratn of I 1 The average grain size also slabilizes, hecoming, heady toom a shear strain ol 0 $\{$ onwards A steady gram shape lulation may be a possible paleosiress or a paleositain rate indicalor, but cannot be a paleosirain indicator

INTRODUCTION

Grain shapes in deformed rocks have been used extensively as strain indicators (e.g. Ramsay \& Huber 14833, fig. 7.16, Odling 1484), and graın-shape foliations have been used as sense of shear indicators (e.g. Ramsay \& Graham 147(), Berthe et al. 1474, Simpson \& Schmid 1983, Lister \& Snoke 1484). However, there has been litte study of the complete history of grain shapes or the foliation defined by them in naturally or experimentally deformed matenals. Some partial histories of foltation development have been recorded in rock analog materials (Means 1981) and in ice (Burg et al. 1986). But steady-state foliation, which remains steady in both orientation and intensity throughout an interval of de formation (Means 1481), has not yet been directly observed in any material 'The study of structures insensil ive to the fintte strain, like steady-state foliation, is important because such structures are potential indi cators of the orientation and intensity of the steady-state flow stress or of the strain rate. I Illusirate an example here of a steady-state toltation and the history of its development in octachloropropane, $\mathrm{C}_{1} \mathrm{Cl}_{\mathbb{A}}$ (hereafter called OCP) delormed in simple shear at 80$)^{\prime} \mathrm{C}$ or $8(1 \%$ ol its absolute melting temperature (1 to $0^{\prime \prime} \mathrm{C}$) and at 4×10^{-5} s^{-1} shear strain rate, using synkinematic microscopy (Means 1489). OCP is a solt, hexagonal organic matenal Optically it has similar looking microstruc tures to quartz and has been used in several previous microstructural studies (see Ree 1491) and references therein). The technıques of synkinematic microscopy and information about the apparalus are given by Means (1989).

Foliation in rocks can be defined by compositional layering, grain size variation, discontinuiles, prelerred orientation of gram boundanes, and preferred onen
tation of platy minerals or lenticular mineral aggregates (Hobbs et al. 1976, p 213) In this experimental example, the foliation is a grain shape foliation, defined statistically by the prelerred onentation of long axes of grains (folition orientation) and the ration ol long axes to shorl axes ol grans (fohation intensity)

EXPERIMENTAL TECHNIQIES

The sample was a moxture of OCP and I(MO) gnt silicon carbide particles, prepared as explained by Jes sell (1486) and Means \& Ree (198\%). Passively moving silicon carbide particles within the OCP serve as material marker points that allow stran calculation and recognttion ol grain boundary mıgration. Photomicro graphs in plane and cross-polarized light with an objec live lens of $\times 4$ magnification were taken every $30 \mathrm{~m} / \mathrm{n}$ dunng the detormation. During each recording, lour photographs in cross polarized light were taken al four different positions of the nicols relative to the specimen in order 10 show all grain and subgrain boundaries. Photomicrographs with an objective lens of $\times 20$ magni fication were also taken every hour in the central part of the sample, tor a more precise record of the microstruc ture and marker particle positions

The ormentations of c-axes of the grams were measured on a universal stage before and aher defor mation. During the deformation they were measured by using the flat stage extinction direction (for the trend ol' the c axis) and birefringence measurement with a Berek compensator (tor the plunge of the c-axis) Although the accuracy of c-axis plunge measurement with a Berek compensator (with an error range of $\pm 10^{\circ}$, Ree unpub lished data) is not as good as on a universal stage, we can lollow the approximate reonentation Irajectones ol

I axes withoul interrupting the detormalion (Ree 1441)) Bulk straln of the sumple was determined by averaging strams indicated by displacement of ll sets of three widely spared marker particles, with a distance of about () $4-1 \mathrm{t} \mathrm{mm}$ hetween marker particles in a set. The im posed bulk delormation was nol ideal simple sheanng, but an approximate smple shearing, with a small short ening across the shear zone A bulk shear strain in this paper represents the value of $\left[D_{2}\right.$ of the average detor mation tensor D_{1} (Means $14 Y()$ with the X axis paralle'l (6) the direction of the bulk sheanng or the direction of the relative displacement of the upper part of the shear ing sample and the l 'axis normal to il

For a quanitalive analysis al grain shape toliation, gram boundanes of the individual grams were digitized from enlarged photographs at the scale of about 123:1, using an Hitachi digitizing tablet coupled to an IBM-PC The hulk shear directoon, again, was taken as the X axis with the Y 'axis normal to 11 . All directions were measured counterclockwise from the dextral shear dırectoon 'To digitize gram boundaries, co-ordinates of pomis were read at 2 mm metervals along the gram houndanes in the photographs 'This corresponds 10 a true length interval of $16 \mu \mathrm{~m}$ 'To obtain the statistical onentalion and intensity of foltation, these data were processed with a OUICKBASIC program, GBO, employing the propection method modified from Punozzo (1483) All segments of grain boundanes were profected onto the projection axis (1 axis) initally parallel to the shear direction (X^{\prime} axis). The projection was retterated tor each position of the projection axis rotated counterclockwise from the shear direction by an incre ment of 1 " through an angle of $180^{\prime \prime}$ As explained later, the ratio of the longest propection $\left(A(\alpha)_{\text {max }}, \alpha=\right.$ rotation ungle of the $($ axis $)$ to the shortest projection $\left(A(\alpha)_{\text {min }}\right)$, and the orientation of $A(a)_{\text {max }}$ coincide with the ratio of the longest to shortest axes of grains and the prelerred orientation of the grain longest axes, respectively The method and procedure are described by Panozzo (1483, 1484) and Schmid et al (1487) in more detal.

OBSERVATIONS AND ANALYSES

'The sample at the beginning of the deformation (Figs Ia and 2a) shows a foam texture consisiting of optically strain-Iree, equiaxed grains 'The average grain area is aboul $9.8 \times 10^{-1} \mathrm{~mm}^{2}$ Loading the sample al $80 \pm 5^{\circ} \mathrm{C}$ initiates deformation ol the grains and grain boundary mıgration (Fig, 2b) The migrating grain boundanes are not generally sermated or lobale. Instead they are straght or slightly wavy in most cases In some cases, they have large wavelength bulges with half wavelengths (bulge width) ot the same order as the gran radius, as commonly seen in OCP deformed at lower temperature (Means 1483) Foliation does not hecome easily visible until a bulk finte shear stran of about $\gamma^{\prime}=04$ has accumulated (Fig, 2c). From this strain onwards, the direction and intensity of foltation appear to he more or less steady to a total bulk shear strain of I. 3

Fig I Maps of OCP sample' 'TO IIU, showing soldd lines as grain boundaries and dashed lines as subgian boundanes Giams referied Io in the text and shown in the detaled map ol Fig 9 ate numbered Anows at the lop show the sense and direction ol shear (a) Мicto structure immedialely belore delormalion (b) Muctosimuclures 4, 4 h later, immediately after delormation with a hulk shear stiatn of I? (c) Mictubtruclures ather a stalic interval ol 22 h aher delormation Scale bar in the nght bullom of (a) curresponds to $250 \mu \mathrm{~m}$ Onen tations of gratn shape loltation (GSF) and maximum hnite elongation (MFE) are indicaled in (b) and (c) Slandard deviations of theste orientalions are about wn and $2^{\prime \prime}$, iespectively
(Figs 2d-g) There is also some development of subgrain boundanes, most of which are approximately perpendicular to the shear zone boundary and parallel to the c axes of the grains (Fig. Ib). Although there is local increase in grain area by grain boundary migration and amalgamation, the average grain area of 123×10^{-3} mm^{2} at the end ot the deformation does not dither much from the initial average area. With 22 h ol static interval

alter the detormation (this is iwice the duration of the deformaton), with the temperature unchanged, the folatoon intensity and onemtation still look 'Irozen' without segniticant change (Figs Is and 2h)

[epormathon pattern

An imaginary square gnd (Fig. 3a) is superimposed on the undelormed sample, and Jessell's (1486) triangle method was used to calculate, Irom displacements of the marker particles, the shape of this gnd at the end ot the delormation (Fig, 3h) This apparently shows the imposed dexiral simple shear delormation with local helerogeneities In the map ol marker particle trajec tories ($\mathbf{F i g} .3^{c}$), it can be seen that marker particles are progressively displaced more or less parallel to the hulk shear direction except in two areas, one to the NW and the wher to the SE of a fixed marker particle in the center (solid curcle) In these two areas the marker particle trajectones show a somewhat hyperbolic pat tern due to the existence of small shortening displace ments across the shear zone

Reortentathon of c-aves

The caxis labnc diagram at the beginning of the deformation is shown in Fig, 4(a). Owing to the pressing, of the sample between iwo glass slides perpendicular to the plane ol observation, to obtain a desired sample thickness, and some preferential extrusion along the shear zone dunng, sample pressing, prelerred orien tation of ciaxes has already been introduced belore detormation With the deformation, the c axis fabmic does not seem to change much trom the beginning, although there is a strengthening of a single girdle of c axes, already developed normal to the shear direction, which is symmetnc with respect to the bulk shear plane but asymmetric with respect to the grain-shape foltation (Fig. 4b). Figure $;$ shows caxis reorientation trajec tones of a lew grains in the central area of the sample The c axes of grains in the NW and SE quadrants of the trapectory diagram rotate sympathetically to the imposed bulk simple shear, generally enhancing the single girdle labnc 'Those in the NE and SW quadrants show some complex rotations although they do nol weaken the single girdle tabne.

Granh stze' Instory

For gran size meusurement, the area of each grain was measured on the enlarged photographs by calculat ing the area enclosed by the digitized grain boundary. About 180 grams were measured at each stage, and average grain area was determined by dividing the total sum of gran areas measured by the number ol grains The results are plotled agannst the bulk shear strain in Fig 6 The inilial average area of $4.8 \times 10^{-3} \mathrm{~mm}^{2}$ increases by aboul 23% after a bulk shear strain ol about

Fig 1 Gind maps ot the sample (a) helure and (b) aller delormalion, drawn using Jessell's (IURG) Inangle method Small, open circles are marker particles used to draw these maps (c) Marker parlicle trajec tones drawn by connecting posilions ol marker particles al l() stapes of the detormation From a tulal ol 348 marker particles digitized al each stage, one particle in each grain, which iemains in the same grain Ihroughoul the delurmation, was selected Circles represent inilial marker particle pustions. A hased point in the center is iepresented as a solid circle The digitizing enor is $\pm 17 \mu \mathrm{~m}$ on the irue sciale ol the sample
0.5 has accumulated. The average grain area of ahoul $12.1 \times 10^{-1} \mathrm{~mm}^{2}$ becomes steady from this shear strain to the end ot deformation Considering the relatively large standard deviation of grain area in Fig, 6, however, the sample does not maintain an equigtanular texture through the deformation Also, the preferred growth of some grains and shmakuge of other grains in Figs I and 2 indicate that the area of individual grains is not steady even though the average grain area of the sample is steady. During static recovery, there is slight increase in grain area ol aboul 8%.

 ol bume grams outside the ared mapped in Fig I are alsu plolled Lower hemisphere equal area propeclams.

Fig, 4 axis reomentalion trapectones ol the gians in the tentral part of the sample Solid lines represent trapectones lor which taxes were measured nor unly belore and aher delormation hul also during delormaliun Those lor which c axes were measured only belore and atier delormation are indicated by dashed lines Girains which disap peared dunng delormation have crosses al the end ol their irajectornes See also Fig, 4 loi iniragranular trains ol mosigeans in this diagiam

Fig 6 Plols ol average gramarea vs bulk shear sirain of the sample 'The molid square reptesents the average grain area alter a static interval of 22 hatter delormation Vertical and horizontal bars are \pm I slandard devialions lor giain area and bulk shear slram, iespectively

Follutum hisworv

Giam boundary ortentation data are shown as rose diagrams representing the total length of grain bound aries per angle of orientation, and as propection da grams representing the total length of profection ($A(\alpha)$) al grain boundaries per angle of rotation of 1 axis (x) in Fig 7 'The maximum and minımum value of $A(x)$, $A(a)_{\text {tnak }}$ and $A(\alpha)_{\text {min }}$, respectively, occur $87-49^{\prime \prime}$ apart at each stage, indicaling that the profection tunctions are symmetric Panozzo (1483, 1484) and Schmid et al. (1487) showed that the ratio ot the longest propectoon $\left(A(\alpha)_{\text {man }}\right)$ to shortest projection $\left(A(\alpha)_{\text {min }}\right)$ und the orientatoon of $A(0)_{\text {max }}$ comende with the ratio of the longest to shortest axes of grams and the preterred orientation of the grain longest axes, respectively, it the following contena are satistied (a) the rose diagram of grain boundary onentations is unimodal and symmetnc; (b) the projection function is symmetnc Since the rose diagrams are more or less unimodal and symmetric, and the propection tunctuons are symmetne in the sample (Fig 7), we can use the projection method to get the average aspect rallo of the grams and the preferred orrentation of the gratn long axes

Figure $X(a)$ shows plots of follation intensity, defined here as the statistical ratio of long axis to short axis of grams, against the bulk shear strain (γ^{\prime}), and of the axtal ratoo of the bulk finite stram ellipse $\left(R_{1}\right)$ aganst g. Also shown is a plot of foliation intensity culculated as it the original grain boundary array had been passively de formed by a homogeneous deformation given by the bulk detormation at each stage. Initially the sample has equiaxed grains with almost no grain shape foliation (an intensily less than 1.1, Figs 1a, 2a, 7a and 8a) With accumulating, stram, foliation intensity increases slowly The lolialion becomes recognizable al $\gamma=114$ (Fig, 2c) and its intensity is about 1$\}$ at this stage (Fig fa). The toliation intensity reaches its highest value (1 5) at $\gamma=$ 0.4, and then becomes steady, although it decreases a little hit (less than 0.1) at the end ol the deformation. Even after 22 h of static interval after the deformation, a period about twice as long as the duration of the defor mation, there is almost no change in foliation intensity of 14 The axial rallo ot the finte stram ellipse, R_{1}, on the other hand, increases rapidly from the beginning, being higher than loliation intensity by a lactor of about 2 3al $\gamma=1.3$ The folation intensity plot of the hypothetical, homogeneously detormed sample runs almost exactly parallel to the R_{1} plot, with only slightly higher values ($=0$ 1) than R_{1} This ditterence results Irom the initial foltation intensity of about 11 at $24^{\prime \prime}$ in the undeformed sample

The plol of foliatorn orientation against \boldsymbol{j}^{\prime} in Fig, $8(\mathrm{~b})$ shows that the foliation orientation is steady at $25 \pm 3^{\circ}$ throughout the deformation As with the foliation inten sity, the loliation onentation does not change during the static interval alter the deformation The direction of maximum finite stretch (H^{\prime}) decreases conlinuously with delormatoon, from $33^{\prime \prime}$ at $y^{\prime}=0.1$ to $20^{\prime \prime}$ at the end ot the deformation. However, the ditference between H^{\prime} and

Ioliatoon orientation is less than fi' hroughout the delor matoon The folatoon ormentalon curve of the homo geneously detormed sumple runs almost parallel to the H^{\prime} curve, remaming only $\sum^{\prime \prime}$ less than H^{\prime} atter reaching 27" at $\mathrm{g}=113$

PROCESSES FOR STEADY-STATE FOLIATION

Figure 4 shows mapsol grain boundaries and iniragra nular strain in the central partof the sample Intragranu lar strain was measured using the displacements of sets of three widely spaced marker particles within a grain and it is nol necessarily homogeneous within a grain. In Fig, $4(a)$, a bulk shear strain of 01 has already been imposed. At the end of the deformation, which accumu laled an additional bulk sheur stran of 12 , most of the grains show an aspect ratoo lower than the R_{1} ratio of their intragranular strain ellipse (Fig. 9h), and alsolower than the theoretical aspect ratio of the same grams deformed assuming passive grain boundanes (Fig. Qc). Some foliation weakening processes are evidently at work to limil the degree to which intragranular plastic deformation can produce a microstructure like that shown in Fig $9(c)$ Several loliation weakening pro cesses are seen to be operating in this sample and are discussed below. These are. migration recrystallization including migration ol siranght or silghily wavy grain boundanes and dissection, rotatonal recrystallization, amalgamation, ngidıly ol hard grains and grain bound ary delormation mechanisms

Migration of'siraghit or shightly warle gram boumdarie's weakens the foliation most ellectively, hy the slow migration of grain boundaries at a low angle to the gram long axis away from the grain center or grain boundaries at a high angle to the grain long, axis toward the gram center Examples are shown in Fig. I0 for grain bound artes between grams 42 and 43 , belween grains 78 and 80 , and the NW boundartes of grams 80,92 and 43 If there occurs migration of gram boundarnes at a low angle to the grain long axis toward the grain center or gram boundaries at a high angle to the grain long axis away from the grain center, as in the NE boundary ot grain 43 in Fig. I(), this process can strengthen the toltation, but this is nol common in the sample 'This kind of recrystal lizalion is classed as conlinual grain boundary migration by Drury \& (Irai (1490) and as local gram houndary migration by Knipe \& Law (148'7), although the latter authors expect non steady-state foliation with this mi gralion mechanism

Dissectom (Urat et al. 1486, Means 1484) weakens the folialion by dividing an elongated grain into separate, more equiaxed parts by growth across il of other grains (Fig II) Six grams are lound to be dissected by other grains in the whole area mapped in Fig. 1. Although it was nol found in the sample described here, another possible weakening process by grain houndary migration is the coalesrence ol two grams with similar latice orientations which were not initially in contact with each other, leading to the development of a T'ype

IV subgran houndary ol Means \& Ree (1488) Folalon weakening occurs il coalescence ol grains accurs along, their shorl dimension. If coalescence of grams occurs along their long dimension, on the wher hand, this process con strengthen the toliatoon

Rotattonal recrvstallization develops more equaxed, smaller grains Irom an elongated grain hy Iransforming low angle houndaries into high angle boundanies, il low angle boundaries are at a high angle to the grain long axis A total of In grains in the whole area mapped in Fig. I hehaved in thas way und examples are grams 96 and 181 shown in Fig 4 It high angle boundares de velop at a low angle to the grain long axis however, rotational recrystallization can strengthen the folialion (Fig. 12). But this strengthening process is generally rare in simple shearing experiments on OCP and lound lor only one grain in the area mapped

Amalgamation (Means 1484) is another possible weakening process, which turns gram boundaries at a low angle to the gram long axes into subgram boundaries with progresisive reduction of misonentation (grams $111 b, 112$ and 114 in Figs Ia \& b). These are called 'Type III subgrain boundaries by Means \& Ree (1988). A total of nine grains were seen lu amalgamate in this way in the sample. Il amalgamation occurs along a gran boundary at a high angle to the grain long axis, however, it could strengthen the foliation This occurred locally (grams 82 and 42 in Figs la \& b). Ribbon grains generally develop parallel to bulk shear direction in this way, here and in other simple shearing experiments on OCP, usually lo develop a high strain zone

Hard grains are unsuitably onented for single slip on weak systems. They usually grow into globular grams without much iniragranular stram but with rigid-body rotation (Ree 1490). Grains 61 in Fig, I and 95 in Fig 4 are typical hard grams OI a lotal of 148 grains in Figg. 1(a) whose c axes were measured, 17 grains are proh. able hard grains with their c axes parallel to or within 20° of the shortening direction, assuming the matn shorten ing direction to be at aboul $45^{\prime \prime}$ to the shear direction. Of these 17 grains, intragranular strain measurement was pussible lor lour grains which enclosed three or more specitic marker particles throughout the detormation. These are grams 31, 61, 45 and 138 (see Fig. 1). All of these grains suffered much lower stran ($R_{1}=13-1.5$) than the bulk stram $\left(R_{1}=33\right)$ and increased their gram area by aboul $60-140 \%$ These grains weaken the folla tron, although grain 138 would have looked more elongate il it had not amalgamated with grain 49 (Figs 1a\&b)

Gram boundary deformation mechamsms, especially graın boundary sliding, are also a weakening process it they are accompanied by more or less ngid translation of grains Study ol the displacement field of marker par ticles showed lault like leatures across grain boundanes at eight sites in Fig. I, commonly around hard grains (Means \& Ree 149()). The amount of offiset is usually 711 $80 \mu \mathrm{~m}$, or $\mathbf{0 . 6 - 1} .7$ the average grain diameter. 'There may have been other, unrecognized grain boundary sliding siles where needed to partly accommodate strain hetero
(1)

(b)

(c)

(d)

(e)

*

∞

*

$\gamma=08$

(h)
$\gamma=0 \mathrm{~g}$

(i)
$\frac{\gamma=11}{\gamma}$

(1)
*

(1)
(1)
$r=0 t$

410

140
4
$\$$

Fip, 7 Propection diagrams (left) and rose diagrams (right) ol gran houndanes ol the sample The propectoon dagram represents the total lengith of gran boundanes propected onto the $\begin{aligned} \text { axis per angle ol rotalion ot the axis 'The rose diagram }\end{aligned}$ represents the intal length of gratn boundaries per angle of orientation $F \mathbf{O}$ in the rose dagtam means lulation onentatun
genenties But this weakenıng process is believed to have played only a mınor role, considering the tact that the average iniragranular strain calculated in Fig $9(b)\left(R_{f}=\right.$ 3.3) is nearly the same as the bulk strain.

Analysis of grain shape toliation was also carred out on Iwo other experiments which showed more extensive grain boundary sliding and development of grain bound
ary openings (expenment 'TO IOS, Ree 1488), and more extensive grain boundary migration (experiment TO 104, Ree 1491). In these experiments, the loliation orientations appear unsteady but the intensities are steady al a value of I.I-I 2 With these low intensity values, however, the apparent unsteadiness of the orien tation is of uncertain significance

Fin, 7 ($k-m)$

CONCLUSION

With intragranular plastic deformation as a dominant Ioliation strengthening process, steady state lolation that has statistically constant orientution and intensity is achieved by several toliation weakening processes in the sample The mafor foliation weakening process is dy namic recrystallization by gran boundary migration, which involves migration of straght or slightly wavy gram boundanes and grain dissection Other processes inelude rotational recrystallization and gratn amalga mation Hard grains also weaken the folliation with their ngid behavior Gram boundary sliding does not have any significant role as a foltation-weakening process although it does operate in several sites

Retardation of the foltation intensity curve behind the strann ellipse curve is large, indicating that the determi nation ol' strain by grain shape is not uselul where grain boundary migration is widespread, as has already been
nuggested by Means (1483) and K nıpe \& Law (1487) II grain shapes in the sample in Fig. I(h), lor example, are used lor strain determination, the apparent R_{1} value will be lower than the true R_{1} value by a factor of aboul 0.4

Lister \& Snoke (1984), Law (1986) and Knipe \& Law (1487) discussed the possible cyclic nature of steady state toltation, although they considered only the orien tatoon of foldation Nomagor cycles are found in intensity and orientation of lolation in the expenment described here. Considering the large strams possible in naturally deformed rocks, however, the foltation behavior de scribed in this paper may represent only a short-lived, heginning part of longer histories Experiments, such as those using a ring shear apparatus, are needed for further study of foliation behavior at very large strains

The main contabution ot this study has been to demonstrate that steady state foliation is possible in delorming polycrystals, and to record the microstruc lural charactenstics of one specitic example

 musly delormed, passive grain boundanes (cicle') 'The solid square represenis the folation intensily aller a stalic inlerval ol 22 h deformation The standard deviation of the bulk shear sla an mithe same as in Fig, 6 Standard devialions of folialion

 sage',

Fig, 4. Mapn ol the ceniral area ol the sumple (a) al a bulk shear strain of $r=0.1$ lor the whole sample and (h) alter delormalion (c) 'The aray of gran boundanes ol homugeneously delomed grains assum ing passive and immobile grain boundanes In (h) iniragranulais strain ellipses are also drawn lor mosi grams

Fig III. Foliation weakening by the migtalion of siraight of slighty Wavy gram boundanes. Some ol marker particles (dots) are drawn lor relerence. Local bulk sirain ellipse is diawn in the botlom nght ol each Mage See text lon discusimon

Fig. II Fiolialion weakening by dissection Gram Itot is separaled by growih ol grame the and Inti (irain tht, in Ium, in dissected by growih ol geams Inta and ob [hots represent marker particles 'The value of γ in the bultom left of each stage represents the bulk shear stian of the whole sample

Fig. 12 Foliation strengitening by the rotational recrystalization of grain l4 3 Ellipses indicate local bulk strams. Dashed lines repieseni subgrain houndaries

A'knowledgements - I thank W [) Means tor his invaluable advice and encourapemeni $P[$ B Bons helped to danty sume ambiguous poinis, P J Hudleston, J L. Urat and M W Jessell are spectally thanked lor their thorough reviews and comments. The program GBO was developed gonily hy me and Y. D Park This work was supported by NSF Grant EAR 880310610 W D Means

REFERENCES

Berihé, D, Choukroune, P \& Jegouzu, P 1979 Orthogneiss, mylorite arid noncriaxial delormalion of granites. the example of the Suath Armoncan shear zone J Structi Cend I, 11-42
Eurg, J P. Wilson, C' J L. \& Milchell, 1 C 1986 Dynamic rectysullization and tabnc development dunng simple shear defor mation of ice J Struct Geol 8, 857-870
Drury, M R \& Urai, J L. (4x) Delormation related recrystalliza lon processes 'Tecronophosics 172, 215-253.
Hobbs, B E: Means, W [) \& Willams, P F 147h An oluthre of Structural Geology Wiley, New York.
Jessell, M W l98is Grain boundary migration and labne develop meni in expenmentally delormed oclachloropropane J Struct Geol 8, 427-442
Knipe, R J \& Law, R D 1487 The infuence of crystallographic onentation and gitan buondary migration on microsiructural and textural evolution in an S-C mylonite Tectonophystcs 135 , 145-164
Law, R D 1986 Relalıonships belween siam and quariz crysiallographic labnes in the Roche Maunce quartailes of Plougastel, Westem Brillany J Siruct Geol 8, 444-516
Lister, Gis \& Snoke, A W 1484 S-C mylonites J. Struct Geol 6, $017-634$
Means, W D IUsi The concepl of steady state foliation Tectono physics 78, 179-144
Means, W D 148, Microstruclure and micromotion in iectystalliza Ion flow ol oelachloropropane a hrst lonk Geol Rdsch 72, 5II128

Means. W [) 1484 Synkimemalic micobsopy ol tramepaterit poly crysals I Struct dical II, |thl-I74
 and malenal hehavior J Siruct Geod 12,4hi-471
Means, W [) \& Ree, J H lukk Seven Iypes of mulgeram houndurle: in uedachloropioparie , Stract Gitol 10, 76h-770
Means, W D \& Ree, J H bern Struclural motion, parlicte molun, and migatoon processes in delormed matenab, Gital Sin . Am Abs he Prog 22, Al 38

 . 44 2-562
Panozzo, R I9H3 'Two dimensonal analyst ol shape labne wing, propections oll lines in a plane Te'corophysics 95, $274-244$
Pancizo, R I4R4 'Two dimensional strain tramithe onentalam ol lines in a plane. J. Siruct Geol 6,2l4-2lil
Ramsay, J G \& Graham, R H 1470 Sirain variation in shear bella, Can $/$ Eurth Sil 7, 78h-KI
Ramsay, J G \& Huber, M I IUxi The Tethnique's of Modern
 Landon
Rea, I H luys Evalution al drlomation maduced gerarir boundary
 AIl
Rese, J H l440 High temperalute delormaton of olachloropro parie dynamis grain growith and lullicer reanentaluin Ini Le/or
 \& Ruller, E H) Spet Publineol Soc Lond 54, 3tor 3nX
Schmid, S M, Panozzo, R \& Bauer, S 1487 Simple shear expen
 747-778
Simporm, $\because \quad$ Stimud, S M 1483 An evalualion of the critena 10 deduce the sense ol movement in sleared ronks Bull peol fiom AIn 44, ISKI-I2KK
 Iom ul minesala In Minerals and Roch [tepormation Lahoratory Studne-The' F'alerson Volume' (ediled by Heard, H Ci\& Hubbs, B E 1 Am Cicophis U/n Grophos Monogr 36, Ibl-144

